Struct cont_arith_code::Sample
source · pub struct Sample<D, T> {
pub distr: D,
pub resolve: Box<dyn FnMut(Index) -> T>,
}
Expand description
A single sample from a distribution
Fields§
§distr: D
§resolve: Box<dyn FnMut(Index) -> T>
Trait Implementations§
source§impl<D: UnivariateDistribution + Clone + 'static, T> Model<T> for Sample<D, T>
impl<D: UnivariateDistribution + Clone + 'static, T> Model<T> for Sample<D, T>
source§fn push(&mut self, s: Index) -> Option<T>
fn push(&mut self, s: Index) -> Option<T>
Push a value into the model and updates its state. Returns a
values once it’s been fully described by a series of indexes.
source§fn next_distr(&mut self) -> Box<dyn UnivariateDistribution>
fn next_distr(&mut self) -> Box<dyn UnivariateDistribution>
Get the distribution for the next symbol from the model.
Auto Trait Implementations§
impl<D, T> Freeze for Sample<D, T>where
D: Freeze,
impl<D, T> !RefUnwindSafe for Sample<D, T>
impl<D, T> !Send for Sample<D, T>
impl<D, T> !Sync for Sample<D, T>
impl<D, T> Unpin for Sample<D, T>where
D: Unpin,
impl<D, T> !UnwindSafe for Sample<D, T>
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.